参考资料

数学部分简介 - OI Wiki

6380 欧拉函数_原理讲解

AMC数论部分(六):欧拉定理

同余

定义

欧拉函数

定义

性质

证明

PlanA

$$ \varphi(n) = n - \frac{n}{\rho_{1}} - \frac{n}{\rho_{2}} \dots -\frac{n}{\rho_{s}} \\ + \frac{n}{\rho_{1} \rho_{2}} + \frac{n}{\rho_{1}\rho_{3}} + \dots +\frac{n}{\rho_{s - 1}\rho_{s}} \\ - \frac{n}{{\rho_{1}\rho{2}\rho{3}}} \dots $$

PlanB

欧拉定理

定义

证明

$$ \rho_1 \cdot \rho_2 \cdot \dots \cdot \rho_{\varphi} = a\rho_1 \cdot a\rho_2 \cdot \dots \cdot a\rho_{\varphi} \\ \Downarrow \\ \rho_1 \cdot \rho_2 \cdot \dots \cdot \rho_{\varphi} \equiv a\rho_1 \cdot a\rho_2 \cdot \dots \cdot a\rho_{\varphi} \kern2pt (mod \kern2pt n) \\ \because (S_i, n) = 1 \\ \therefore 1 \ \equiv a^{\varphi(n)} \kern2pt (mod \kern2pt m) $$

例题

2011 AMC 10B - 23

$2011^{2011}$的百位数字是什么?

(A) 1 (B) 4 (C) 5 (D) 6 (E) 9

解题思路

$$ \because 11^{\varphi(1000)} \equiv 1 \kern2pt (mod \kern2pt 1000), \varphi(1000) = 400 \\ \therefore 11^{2011} \equiv 11^{11} \kern2pt (mod \kern2pt 1000) \\ \because 11^{11} = (10 + 1)^{11} = 1^{11} + 1 ^ {10} \cdot 10 \cdot C_{11}^{10} + 1^9 \cdot 100 \cdot C_{9}^{11} + \dots (超过百位无需计算) \\ \therefore 11^{11} \kern2pt (mod \kern2pt 1000) = (1 + 110 + 5500) \kern2pt (mod \kern2pt 1000) = 611 $$